
Jank in Flutter
March 2021

Compiled by Ian Hickson.

This deck is a status update that was presented to the Flutter leadership team. It is an internal 
artifact of the team's internal processes, and not intended as public communication. Since 

Flutter is an open source project, it is nonetheless publicly viewable, and you are welcome to 
read it to see how we are internally thinking about the topic. However, bear in mind that it may 

use terminology or conventions that differ from those used in official public documentation.



Project structures and incentives



Background

Good performance has long been a stated priority of the Flutter project.

Currently there is very little structure around performance issues: we treat them 
more or less like exceptions. You can get exceptions anywhere, the responsible 
team is the one whose code throws the exception. You can get jank anywhere, the 
responsible team is the one whose code janks.

In 2019 and 2020 we had a (one-person) "performance team". This was really an 
engineer on the engine team focused on performance, largely working on metrics 
collection and shader warm-up mitigations. 



Background

Regressions in areas we have thought to monitor are caught in our daily 
benchmark audit (currently performed by Ray Rischpater ), which motivates the 
team to maintain a performance status quo. This is similar to our use of 
continuous integration to catch functional regressions.

For Googlers specifically, large scale performance improvements can help with 
career development. Beyond this, we do not have strong processes in place to 
motivate contributors to improve performance specifically, any more than we 
incentivize bug fixing.



Background

We currently have five labels in GitHub for performance issues. The first is a 
general catch-all label:

●  severe: performance  applies to all performance issues

The others apply to subsets of performance issues with specific characteristics:

●  perf: speed  applies to jank issues
●  perf: memory  applies to memory usage issues
●  perf: energy  applies to battery usage issues
●  perf: app size  applies to binary size issues



Proposal

Since these efforts cut across multiple projects (Skia, Dart, Flutter) and are largely 
tactical in scope (many individual efforts focused on specific problems with no 
overarching theme beyond "performance"), a single point of contact (the 
"performance constable") that regularly collects and propagates status updates 
from the many relevant engineers to the various team leads is probably the most 
effective structure.

This could take the form of a TPM project or could be coupled to our existing 
critical issue triage process (e.g. by marking jank bugs P2 or auditing all bugs with 
a particular label each week).



Proposal

Identifying key user journeys (e.g. the GPay onboarding flow) that show 
particularly notable performance issues today, and having the "performance 
constable" periodically demonstrating progress on these specific interactions to 
leadership, may help focus efforts.



The following terms are used when describing timelines:

Weeks: At least a couple of weeks, but probably less than three months.

Months: At least three months, but probably less than a year.

Quarters: At least six months, but probably less than a year.

Years: Over a year, probably several years.

These estimates are highly speculative.

Legend



Making good progress. Sufficiently staffed.

Success is not imminent. May be incompletely staffed.

Nothing or very little is happening. Unstaffed or very low priority.

Information is lacking.



Early-onset jank



Background

We first noticed early-onset jank in 2015.

Over the years we have made numerous improvements to address this issue, the 
earliest and most prominent was moving from JIT compilation of Dart code to 
AOT compilation.



Background

Unfortunately our focus has primarily been on sustained performance, not 
early-onset jank, and therefore we have historically been willing (often 
unconsciously) to sacrifice start-of-app performance for sustained performance.

The most notable example of this was our migration to Metal, which was driven by 
Apple's deprecation of OpenGL. While we believe Metal has better sustained 
performance characteristics, it has worsened our early-onset jank situation on iOS 
quite significantly.



Background

We migrated to Metal on iOS on March 31st 2020. This caused a noticeable 
regression in our "worst rasterizer frame time" performance, as shown below. 
However, since we were focused on sustained performance and have a culture of 
ignoring worst-frame times, we didn't understand the significance at the time.

2018...                                                     2019...                                                                                                  2020...                                                                                                                 2021...

Metal support lands ⤴ 

Gallery transition worst rasterizer frame times (ms); >16ms indicates jank

iOS

Android



Background

We have also recently observed an increase in reports about early-onset jank from 
our developers.

To obtain specific real-world scenarios with which to evaluate solutions, we 
encourage people to file issues.

Naturally, only a subset of users actually file bugs. There is therefore a risk that 
these may not be representative, and that reducing them to test cases may lose 
relevant context that affects real-world performance.



Background

In recent history we've received about five actionable reports of actual 
reproducible jank. Shader compilation jank is the primary problem seen in these 
issues. It is especially notable on iOS with Metal.

Our focus on sustained performance has led us to create more and more 
specialized shaders, which need to be compiled on first use, and which 
contributes to this issue.

For example, some animations require shaders to be compiled for each frame, and 
it can take multiple iterations to find and compile all the shaders used.



Background

Q. Why can't you compile all the shaders ahead of time?
A. There are an intractable number of shaders due to the level of specialization we 
currently apply.

Q. Why can't you enumerate the shaders an application will need ahead of time?
A. It may depend on many factors, such as screen size, user preferences (font 
size, color schemes), the nature of dynamic or user-generated content shown by 
the app, etc.

Q. Metal on iOS made this worse. Does Metal on macOS have the same issues?
A. Yes, and we believe the same fixes will resolve them.



Overview of efforts addressing early-onset jank

● Shader warm-up on Metal
● Static shader set
● Optimising specific shaders
● More general path shader
● Tests for Skia
● Thread prioritisation
● Task prioritisation
● Diagnostics
● Tooling integration for precaching shaders
● Documentation



Shader warm-up on Metal

When we migrated to Metal we lost shader warm-up on iOS.

Risks: Implementing shader warm-up for iOS to the level we see in OpenGL may be 
technically challenging.

Timeline: Weeks to months.

Status: Work by Jim Van Verth (Skia) complete. Work from Flutter team to 
integrate with new Skia APIs is not yet started. Will probably need follow-up work 
from Skia team to move warm-up to asynchronous operation.

reed, zra



Static shader set

Since the root cause is shader compilation of specialized shaders, one solution 
would be to use a finite set of much more general shaders.

Risks: May be impractical (can this integrate with Skia? how many shaders are 
needed to cover everything we support?). General shaders may be insufficiently 
specialized to achieve full performance. Static shader set may be too big to 
compile on startup, defeating the purpose of the effort.

Timeline: Investigation results in a few months, deployment in a few quarters.

Status: Chinmay Garde working on design doc.

zra



Optimising specific shaders

Studying specific scenarios has flagged some shaders that are especially 
troublesome due to being over-specialised. By generalizing these we may improve 
matters, potentially with little downside.

Risks: Optimizing for particular animations may make matters worse for other 
animations. Generalized shaders may require more battery.

Timeline: Weeks.

Status: Brian Saloman (Skia) is starting work on the reduced geometry mode 
variation mode now.

reed



More general path shader

By having fewer shaders we reduce the number of times we stall for compiling 
shaders. Paths specifically have many specialized shaders today.

Risks: This is a trade-off between lots of simple shaders (lots of compilation jank) 
versus fewer more complex ones (potential for bugs). Also some complications 
around anti-aliasing.

Timeline: Quarters. First production results expected Q3 2021.

Status: Chris Dalton (Skia) has implemented some new algorithms. Testing and 
enabling the shaders remains to be done.

reed



Tests for Skia

Having the Skia team be able to reproduce these issues in their own harnesses 
and development environment would help the Skia team debug and address the 
parts of those issues that are in their wheelhouse.

Risks: Having specific tests as targets risks over-optimising for unrepresentative 
cases. Dependency on another team to address a critical issue increases 
uncertainty on timelines.

Timeline: Tests available early Q2 2021. No commitment for improvements.

Status: Discussions ongoing to determine optimal form for tests.

ianh



Thread prioritisation

There are a number of situations where we could tweak thread priorities; for 
example, Apple has suggested that insufficient priority may be the reason for 
Metal shader compilation hangs.

Risks: May not have any meaningful effect.

Timeline: Not currently scheduled. Weeks to months once staffed.

Status: Some early investigations happened in each case, but no current activity.

zra



Task prioritisation

There are a number of situations where we could tweak task priorities; for 
example, processing rendering-related tasks ahead of other background tasks.

Risks: May not have any meaningful effect.

Timeline: Not currently scheduled. Weeks to months once staffed.

Status: Chinmay Garde has written a design doc; no active work ongoing.

zra



Diagnostics

A number of ideas are being considered to improve the developer experience for 
dealing with jank, for example exposing shader compilation more obviously.

Risks: Minimal risk.

Timeline: Weeks.

Status: Brian Osman (Skia) has been doing work on identifying shaders as they are 
compiled; this still needs Flutter-side work to integrate with the new APIs. 
DevTools work is relatively small and would start after Flutter integration is 
complete.

reed, zra, jacobr



Tooling integration for precaching shaders

The Flutter tool and IDEs could expose features to enumerate the shaders that 
need to be warmed up.

Risks: IDE integration could be confusing to users who would otherwise not be 
aware of this feature at all. May not help with iOS if iOS shader warm-up does not 
fully warm-up the shaders.

Timeline: Not currently scheduled. Weeks once sufficiently staffed.

Status: IDE work currently in the discussion stage. Probably needs a PM. 
Multiplatform test-based shader warm-up work currently unstaffed.

zra, jacobr



Documentation

We would like to turn recent lessons learnt from GPay and gSkinner collaborations 
into public documentation (videos, web pages, etc).

Risks: Performance debugging is a specialized skill, teaching it is non-trivial.

Timeline: Not currently scheduled. Weeks once sufficiently staffed.

Status: Filip Hracek has some ideas but no time to work on them. Being 
considered for Q2 2021.

redbrogdon (ianh)



...

Risks: 

Timeline: Not currently scheduled.

Status: 



Other performance issues



Background

We continue to make performance improvements in general. For example, Kaushik 
Iska switched macOS to Metal, which is expected to improve sustained 
performance.

Performance is an area where the work never ends, however.



Overview of topics

● Web scrolling
● Reducing painting
● Garbage collection
● Tooling improvements for Flutter for web
● Other tooling issues
● Faster SVGs
● Faster vector graphics format
● Framework performance issues
● Reducing rendering latency
● Other engine performance issues



Web scrolling

A very noticeable problem with the web target is the performance of scrolling 
large regions, a common operation on the web. This problem is will hurt adoption 
of Flutter for web since it presents performance cliffs.

Risks: Web issues may require updates to browsers (e.g. weak references on 
Safari), which implies a very long development cycle (updating standards, 
implementing those standards in browsers, deployment of the browsers).

Timeline: Unknown. Could be months to years.

Status: This is the web team's primary focus.

ferhat



Reducing painting

We could reduce painting by only recomputing pixels in regions of the rasterized 
image that have changed from scene to scene.

Risks: It may be more expensive to determine the regions that need repainting 
than just repainting the scene as we do now.

Timeline: Months once the effort is started; this work is not currently scheduled.

Status: Some early exploration was performed Jim Graham last year. Matej Knopp 
may look at this after current desktop work.

zra



Garbage collection

There is a slow trickle of reports of issues involving garbage collection, e.g. that 
GC events are poorly timed, or that concurrent GC is descheduling time-critical 
work. Some reports may be the result of poor diagnostics, some may be real.

Risks: Not applicable.

Timeline: Not currently scheduled. Weeks to years depending on issue.

Status: No recent efforts have looked at garbage collection timing.

asiva



Tooling improvements for Flutter for web

Examination of performance issues with Flutter applications deployed to the web 
has discovered some specific problems which tooling could help with, e.g. not 
using lazy building for scroll views, repainting too much, laying out too much, etc.

Risks: Minimal risk.

Timeline: Planning expected in late March 2021, with fixes starting in Q2 2021.

Status: Project is in the planning stages. Has UX and PM involvement.

jacobr



Other tooling issues

Other ideas are also being considered to improve the developer experience for 
dealing with performance issues beyond jank, for example making the Dart 
DevTools show performance live rather than requiring manual refresh.

Risks: Minimal risk.

Timeline: Weeks to months once sufficiently staffed.

Status: UX studies determined a number of areas that would benefit from 
improvements, work planned to start Q2 2021. May need PM support. Alibaba are 
currently contributing some tooling improvements for exposing SVG render times.

jacobr



Faster vector graphics

SVGs often are used in preference to PNGs due to binary size concerns. 
Applications using SVGs in Flutter (e.g. GPay) are experiencing high rasterization 
thread times. Transparency and gradients in particular are proving very expensive. 
Skia is investigating improving performance for these SVGs.

Risks: Optimising for specific SVGs may negatively impact other scenarios.

Timeline: Months.

Status: No current work is focused on rendering SVGs in particular.

reed



Faster vector graphics format

Vector graphics are commonly used but current solutions are expensive to parse, 
render, and animate. We could develop a new vector graphics format optimized for 
first-frame rendering speed and efficient animations.

Risks: Getting adoption of a new standard is not guaranteed. A new standard may 
not solve the underlying performance issues.

Timeline: Years.

Status: Collecting requirements.

ianh



Framework performance issues

There are many performance improvements we can make in the framework, 
starting with making our benchmarks more representative of real workloads.

Risks: The opportunity cost of some of these may be high (i.e. the impact of some 
of these improvements may be less than other non-performance-related work we 
could work on instead).

Timeline: Not currently scheduled. Solving all known issues would take years.

Status: Some bugs get resolved as part of larger framework planning, but no 
specific performance-focused effort is underway.

hansmuller (tvolkert)



Reducing rendering latency

If we have multiple frames in flight, we currently render them in sequence, even if 
we could skip one and jump straight to the most recent frame. By skipping 
intermediate frames we could improve performance.

Risks: Generating more frames could harm CPU performance and battery usage.

Timeline: Started in March 2020; ongoing.

Status: Kaushik Iska has been working on this. The most recent attempt to land 
this feature had performance and tooling regressions. Work continues.

zra



Other engine performance issues

There are some issues filed regarding potential engine performance 
improvements (other than those already listed in this deck).

Risks: The opportunity cost of some of these may be high (i.e. the impact of some 
of these improvements may be less than other non-performance-related work we 
could work on instead).

Timeline: Not currently scheduled. Solving all known issues would take years.

Status: Some bugs get resolved as part of larger engine planning, but no specific 
performance-focused effort is underway.

zra



...

Risks: 

Timeline: Not currently scheduled.

Status: 



Memory



Background

Memory usage can directly contribute to jank because it reduces the space 
available for caching and increases the time taken by GC.



Overview of topics

● Compressed pointers
● Tooling
● Other Dart memory issues
● Flutter memory issues



Compressed pointers

Since most programs are happy to operate within a 4GB address space and don't 
need the full 18EB address space that 64 bits provide, Dart could store pointers 
using 32 bits and expand them to 64 bits on the fly. This is estimated to reduce 
heap memory usage by 20-30%.

Risks: Additional complexity in the VM, additional complexity exposed to 
developers (since they need to decide which mode to use), runtime performance.

Timeline: Should be complete in 2021.

Status: Work is ongoing.

asiva



Tooling for memory diagnostics

A number of ideas are being considered to improve the developer experience for 
dealing with memory issues, for example clearly describing where memory is 
being used.

Risks: Minimal risk. Investigations using a prototype suggests a lot of apps are 
leaking, so there will be follow-up work needed to resolve issues.

Timeline: Leak detection expected to be productionized in Q2 2021.

Status: Some UX research uncovered particularly important pain points. Terry 
Lucas working on this. May need PM support.

jacobr



Other Dart memory issues

There are a few ideas for memory improvements currently being considered.

Risks: Improving memory usage often involves trade-offs (e.g. memory vs time).

Timeline: Resolving known issues will take months to years.

Status: Previously-mentioned projects are ongoing, and will give way to further 
issues as they get resolved.

asiva



Flutter memory issues

There are many areas where we believe that memory usage could be improved.

Risks: The opportunity cost of some of these may be high (i.e. the impact of some 
of these improvements may be less than other work we could work on instead).

Timeline: Not currently scheduled. Known issues would take months to years.

Status: Dan Field has done substantial work in this area but that work is currently 
on hold.

tvolkert



...

Risks: 

Timeline: Not currently scheduled.

Status: 



Binary size



Background

Binary size contributes to load times and to memory usage (which itself 
contributes to jank as described in the previous section).

We have made significant gains in binary size for Flutter applications over the 
years, but it remains an area of concern. The smallest Android application we can 
build is still about 4.5MB, the smallest iOS application is about 9.1MB. These 
numbers also correspond roughly to the overhead of adding Flutter to an existing 
application, which makes Flutter a more difficult decision than we would like.



Overview of topics

● Deferred loading
● Other known binary size issues



Deferred loading

Android supports a model where applications sections are downloaded on 
demand ("Split APK"), reducing binary size and runtime memory usage when a 
section of the application is not activated by the user.

Risks: Current offering is Android-only and requires some manual configuration, 
which may put it out of reach for some developers.

Timeline: Should be available in the next beta.

Status: Product is ready; Gary Qian is currently writing documentation.

asiva, zra



Other known binary size issues

While the low-hanging fruit is largely picked, there are still some areas where 
binary size may be improved.

Risks: There are often trade-offs involved, e.g. trading precomputed data (which 
costs bytes) for runtime computation (which costs startup time).

Timeline: Not currently scheduled. Known issues would take months to years.

Status: No recent efforts have looked at binary size other than deferred loading.

tvolkert



...

Risks: 

Timeline: Not currently scheduled.

Status: 



❇


