PUBLICLY SHARED

Flutter

FragmentProgram AP]
Support Improvements

SUMMARY
Improvements to FragmentProgram API Support.

Author: Zach Anderson (zanderso)
Go Link: flutter.dev/go/fragment-program-support
Created: 5/2022 / Last updated: 6/2022

WHAT PROBLEM IS THIS SOLVING?

The FragmentProgram API:
1. Isn't well documented, and requires third party tools to use at all.
2. Inits current form, it won't work with Impeller.

BACKGROUND

The Flutter Engine’s FragmentProgram APl was added in Flutter 3.0 primarily to
support the ink sparkle effect that was part of the new version of Material. The API
is documented as being “in beta” with several issues still open. It accepts a subset of
SPIR-V bytecode. In particular, as it is implemented today, it accepts only the subset
of SPIR-V bytecode that the Engine can transpile to SKSL. The SKkSL code is then
passed to Skia's SkRuntimeEffect API, which compiles the SkSL at runtime into a
platform specific shader. The discussion that led to this design is documented here.

Since the 3.0 release, Flutter users have started doing really cool things with the
FragmentProgram API [1, 2, 3, 4]. This has spawned tutorials [1, 2], and a couple of
efforts to make it easier for developers to use [1, 2]. The sudden interest in the
feature has taken the Engine team a bit by surprise. It was incorrectly assumed that
the API was so difficult to use, and so poorly documented, that it would not inspire
much use by the community.

Concurrent with the work to add the FragmentProgram API, the team has also been

PUBLICLY SHARED


https://api.flutter.dev/flutter/dart-ui/FragmentProgram-class.html
https://api.flutter.dev/flutter/material/InkSparkle-class.html
https://m3.material.io/
https://github.com/flutter/flutter/projects/207
https://github.com/flutter/engine/blob/main/lib/spirv/README.md
https://github.com/flutter/engine/blob/main/lib/spirv/lib/src/transpiler.dart
https://skia.org/docs/user/sksl/
http://flutter.dev/go/shaders
https://twitter.com/roipekr/status/1527026419649454081
https://twitter.com/roipekr/status/1527324341704466438
https://twitter.com/wolfenrain/status/1526309773846650880
https://twitter.com/RealDevOwl/status/1531368928659787780
https://blog.devowl.de/shaders-with-flutter-and-flame-faf5fda42100
https://blog.devowl.de/flutter-widgets-with-shaders-94e6e9a9640d
https://github.com/wolfenrain/umbra
https://github.com/felixblaschke/shader
https://github.com/orgs/flutter/projects/21

PUBLICLY SHARED
working on an experimental rendering backend called Impeller. Impeller
precompiles a smaller, simpler set of shaders at Engine build time so that they
won't compile while an app is running, which has been a major source of jank in
Flutter. The need to have all shaders compiled ahead of time conflicts with the
capabilities exposed by the FragmentProgram API. The design outlined below
explains how we plan to resolve this conflict.

Glossary

e SPIR-V - An industry standard intermediate representation of shader
programs.

GLSL - The OpenGL shading language.
SKSL - Skia's shading language.

OVERVIEW

The proposed solution is for the Flutter Engine to vend a shader compiler that can
take GLSL (and possibly SPIR-V) as input, and generate a shader in the correct
format depending on the target platform and whether Impeller is enabled. This
shader compiler can then be integrated into the Flutter build in the Flutter CLI, and
shaders treated just as any other asset.

Non-goals

This design will not address the issue that it will likely still be useful for Dart code to
be generated for custom shaders to fill in uniforms, and present an idiomatic API to
Flutter application code. Tools developed by the community like Umbra seem like a
nice way to do that.

DETAILED DESIGN/DISCUSSION

Regarding the two problems mentioned above, the same solution will both make
the FragmentProgram API easier to use, and make it ready to be supported in
Impeller. In particular, to solve the first problem, the Engine build will vend a shader
compiler (impellerc) that accepts GLSL (and possibly also SPIR-V). When a Flutter
project includes a file ending in . frag in GLSL format in the asset list in its
pubspec.yanml file, the Flutter build will use impellerc to generate a shader in the
correct format, and include it as an Asset in the application’s asset bundle.

Today, the correct format is the SPIR-V bytecode that is consumed as described
above. In the future, for example with Impeller, the correct format may be
dependent on the target platform and rendering backend used by the Engine. This
approach solves the second problem mentioned above.

Unfortunately, this design involves a breaking change of the FragmentProgram API

when Impeller is enabled. Instead of always accepting SPIR-V bytecode, when
Impeller is enabled, the API will accept a format that depends on the target

PUBLICLY SHARED


https://github.com/orgs/flutter/projects/21
https://github.com/flutter/engine/tree/main/impeller
https://github.com/flutter/flutter/issues/77412
https://www.khronos.org/api/spir
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://skia.org/docs/user/sksl/
https://github.com/wolfenrain/umbra

PUBLICLY SHARED
platform, and which must be generated by impellerc.

Generally when we break something, we should be able to elucidate the benefits. In
this case, the benefits are the following;:

1. Less reliance on third party tools—Flutter will include everything needed to
translate a GLSL shader into the format accepted by Engine APIs.

2. When Impeller is enabled, this approach will allow using custom shaders with
much less jank for at least two reasons.

a. First, there will be no need to transpile the shader to SkSL.

b. Second, the shader won't need to be compiled from SkSL to the
correct platform specific format at runtime since it will already be
bundled with the application in the correct format.

3. Changes to allow Impeller to support the FragmentProgram API are also
attractive because when implemented with Impeller, the feature set used by
custom shaders will no longer be limited by the capabilities of the SPIR-V to
SKSL transpiler. Instead, the feature set will expand to be defined by some
standard version of GLSL that impellerc supports.

4. Users who migrate to this flow will be able to hot reload their shaders written
in GLSL, even when Impeller is not enabled.

Work on the above approach is already underway on the master channel. The
Engine’s shader compiler, impellerc, is used by Impeller for its offline shader
compilation. We have landed a series of changes to build it for each host platform,
include it in the Engine’s host artifacts, and to download and use it from the Flutter
CLI. On the master channel, it is already used to compile the Material ink sparkle
shader.

The remaining work is to implement the FragmentProgram APl in Impeller. This will
require prepending the offline-compiled platform specific shaders with metadata

explaining to Impeller how e.g. uniform buffers should be filled in. However, this is
expected to be straightforward, and optimistically will be finished by the end of Q2
or at the beginning of Q3. As a side note, the need to prepend platform-specific
metadata implies that the FragmentProgram API will accept only shader data that
has been generated by impellerc when Impeller is enabled.

Additionally, when the Flutter build is driving compilation of shaders, we will be able
to hot reload them. This is possible because the Flutter CLI's build system can note
that asset files have been modified, requiring the new assets to be sent to the
running application, and a reassemble triggered, just as with the update of any
other kind of asset.

TESTING PLAN

We are currently testing the above design with the tests of the Material ink sparkle
shader. Going forward we will expand the scope of testing to include the existing

PUBLICLY SHARED


https://docs.google.com/document/d/15s-g74O6ixlKUvDBWCoqLiJhQhAvbSFcD1zqbgK3g2k/edit?resourcekey=0-XHgerhNJuFaRfPqKq5iSKA
https://github.com/flutter/engine/tree/main/impeller/compiler
https://flutter.googlesource.com/recipes/+/9d7163bc1cad0da9835f8350a7659ded3b24abe8
https://github.com/flutter/flutter/pull/102593
https://github.com/flutter/flutter/pull/102674
https://github.com/flutter/flutter/issues/102853
https://github.com/flutter/flutter/issues/104788
https://github.com/flutter/flutter/issues/104788

PUBLICLY SHARED
Engine repo unit tests of the FragmentProgram API. Currently, these are not yet
using impellerc, but rather using an off-the-shelf one from one of the Engine’s
third party dependencies. This will need to change concurrent with Impeller
implementing the FragmentProgram API because with Impeller enabled, the API will
not accept SPIR-V.

DOCUMENTATION PLAN

At minimum, the API documentation on FragmentProgram will be expanded to
include more information about the input format as it evolves, and to include
information about how to bundle custom shaders with an app by including GLSL
shaders in an application’s asset list.

However, overall, the documentation of the FragmentProgram API, and the subset
of GLSL that it supports, needs a lot of expansion, and should be featured more
prominently on the website. As the maturity of the APl increases, we should also
consider e.g. video tutorials on YouTube, blog posts, etc.

MIGRATION PLAN

In the near term, the FragmentProgram API will not be broken. It will continue to
accept SPIR-V. In the future, if we complete a migration to Impeller, the
FragmentProgram API will stop accepting SPIR-V. At that point, all users will need to
migrate to using impellerc to generate the right platform specific shaders by way
of the usual Flutter build workflow as described above. Users can already begin
work on the migration, and should soon see benefits to doing so since custom
shaders are planned to be hot-reloadable in future releases.

Additionally, other smaller breaking changes to the FragmentProgram API are
implied by this overall plan. For example, FragmentProgram.compile currently
accepts a spirv named argument, which will no longer make sense. Furthermore,
we may wish to employ techniques from image loading to avoid shader data
entering the Dart heap, which would also require APl changes. The specifics of
these smaller changes will be spelled out, and migration paths communicated, as
the changes are landed.

PUBLICLY SHARED


https://api.flutter.dev/flutter/dart-ui/FragmentProgram/compile.html
https://api.flutter.dev/flutter/dart-ui/FragmentProgram/compile.html
https://api.flutter.dev/flutter/painting/AssetImage-class.html

