
SUMMARY

Implementing iOS PlatformView BackdropFilter. (Blur)

Authors:
Chris Yang(@cyanglaz), Emily Best(@emilyabest), Javon Thomas(@JTKryptic)
Go Link: flutter.dev/go/ios-platformview-backdrop-filter-blur
Created: 6/2022 / Last updated: 10/2022

WHAT PROBLEM IS THIS SOLVING?
Add the ability for an iOS PlatformView to be filtered when it is underneath a
backdrop filtered widget. See: https://github.com/flutter/flutter/issues/43902

Note that when the child of BackdropFilterLayer is a PlatformView, and there are no
PlatformViews underneath the BackdropFilterLayer, the PlatformView does not
need to be filtered. See the layer trees below:

BACKGROUND

PUBLICLY SHARED

https://goto.google.com/ios-platformview-backdrop-filter-blur
https://github.com/flutter/flutter/issues/43902

PUBLICLY SHARED
A BackdropFilter widget applies a filter to the existing painted content and then
paints its child. The most common use case of the BackdropFilter widget is to blur
the background, but any image filters can be added to the background.
PlatformViews on iOS are not rendered with Skia, instead, they are rendered with
Quartz. As a result, mutations on an iOS PlatformView do not work automatically.
Each mutation has to be implemented separately for iOS PlatformViews. For
example, transform and clipRect on iOS PlatformView is implemented in this PR.
BackdropFilter works differently from other mutators because it applies to a given
region rather than a view/layer. A standard approach to apply a backdrop filter is to
screenshot the requested region and apply the filter to that screenshot.

In general, there are 3 options to apply mutation to a frame containing
PlatformViews.

1. Use Flow to apply the mutation to all layers.
2. Use Quartz to apply the mutation to all layers.
3. Use Flow to apply the mutation to none-PlatformView layers and Quartz to

apply the mutation to PlatformView layers.
See “Decide The Top Level Approach” section for more information on comparing
the 3 options for backdrop filter mutation.

Glossary
● Flow - Flutter’s compositor. Flow knows the layer structures of each frame,

including PlatformView. Flow does not know the content of the PlatformView.
● Quartz - Apple’s 2D drawing engine. Quartz has the knowledge of the

PlatformView’s content. Quartz does not know the layer structure of a frame
that is composite by Flow.

● FlutterView - The UIView that Flutter’s widgets are rendered on. FlutterView
is the parent view of the PlatformView.

● PlatformView - 1. A type of flutter widget that embeds UIView to Flutter
widget tree; 2. The UIView that is embedded.

● PlatformView Layer - The layer represents a PlatformView in the Flutter
engine layer tree.

● BackdropFilter Layer - The layer represents a backdrop filter in the Flutter
engine layer tree. The BackdropFilter layer applies its filter to the layers
beneath itself in a given region. In the context of this project, when a
PlatformView is beneath a BackdropFilter Layer, the PlatformView needs to
be filtered.

● PlatformView Overlay (Or Overlay) - The UIView that Flutter’s widgets are
rendered on if the widgets cover PlatformView. The rect of an overlay is the
intersection of all the flutter widgets and the PlatformView. If a flutter widget
partially covers the PlatformView, the overlay’s rect will be only part of the
widget’s rect. Part of the widget will be rendered on the Overlay and part of
the widget will be rendered on the FlutterView. See Unobstructed
PlatformView for how the overlay rect is decided and the reason behind it.

PUBLICLY SHARED

https://api.flutter.dev/flutter/widgets/BackdropFilter-class.html
https://github.com/flutter/engine/pull/9075
https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_overview/dq_overview.html#:~:text=Quartz%202D%20is%20a%20two,environments%20outside%20of%20the%20kernel.
https://docs.google.com/document/d/1ESHoQq1i2_WQAH1dIcYOCbPG73_ELrB8SmR6KEmLZUE/edit
https://docs.google.com/document/d/1ESHoQq1i2_WQAH1dIcYOCbPG73_ELrB8SmR6KEmLZUE/edit

PUBLICLY SHARED
● Mutation - An effect that applies to the PlatformView which results in a

visual change of the view. Transform, ClipRect, Opacity and Backdrop Filters
are types of the mutations.

● Mutator - A c++ object that represents a mutation.
● Mutator Stack - A stack contains all the mutations to be applied to the

PlatformView. Each PlatformView has its own mutator stack.

● Layer Tree - The layer tree contains the container layers for the mutators
(transform, clip rect, backdrop filter, etc) and the leaf layers for the views that
the mutators will be applied to (platform views, picture layers). When a frame
is built a layer tree of all the mutators and views used is created, and in order
to display the frame, two important functions are called: Preroll and Paint.

● Preroll - The preroll function navigates through the layer tree and
determines what mutators will be applied to PlatformViews. For platform
views, the function pushes the mutator to a global stack, and when it reaches
the platform view layer, it creates a copy of the mutator stack for that specific
view of all the mutators that should be applied to it during paint.

● Paint - The paint function essentially applies all the mutators to each
platform view from their respective mutator stack.

OVERVIEW
The approach we decide to use is to let non-PlatformView widgets to be blurred as
is and apply the blur effect to the PlatformView using a gaussian blur CAFilter. This
approach is similar to how we implemented other mutators. See the “Decide The
Top Level Approach” section for more details on how we came to this solution.

Non-goals

We do not discuss implementing a BackdropFilter with an arbitrary ImageFilter in
this integration. Supporting other ImageFilters on PlatformView is a completely
separate topic and deserves its own project and design document.

DETAILED DESIGN/DISCUSSION

Decide The Top Level Approach

Option 1. Use Flow to apply the mutation to all layers.
Backdrop filter mutation requires the compositor to know the content of the layer.
Because Flow does not know the content of PlatformView, option 1 is impossible.
One workaround would be to convert the content of the PlatformView to a texture
and feed the texture to Flow. We explored the option and there are a few severe
dropbacks:

PUBLICLY SHARED

https://github.com/nst/iOS-Runtime-Headers/blob/master/Frameworks/QuartzCore.framework/CAFilter.h

PUBLICLY SHARED
● There is no arbitrary Quartz API to convert a UIView to texture directly. One

has to snapshot the UIView and convert the resulting UIImage to a texture.
● Snapshotting UIView does not always work for all types of UIViews. For

example, WKWebView cannot be snapshotted. See “Take a screenshot of the
PlatformView and use the CIGaussianBlur filter to blur the screenshot”
section for more discussion on the drawbacks of snapshotting
PlatformVIews.

Option 2. Use quartz to apply the mutation to all layers.
This can be potentially done by adding a UIVisualEffectView as a subView of the
FlutterView and setting the right ZIndex. In a flutter app with PlatformViews, as a
byproduct of “Unobstructed PlatformView”, a layer’s ZIndex in Flow does not
necessarily match its ZIndex in Quartz.

Below is an example of a frame containing PlatformView and Overlay:

In this example, The final composition is made of 3 layers in Quartz. The FlutterView
contains the background orange and the red rectangle widget, the blue

PUBLICLY SHARED

https://docs.google.com/document/d/1ESHoQq1i2_WQAH1dIcYOCbPG73_ELrB8SmR6KEmLZUE/edit

PUBLICLY SHARED
PlatformView, and the overlay contains part of the red rectangle widget that covers
the PlatformView.

Let’s make a scenario where the backdrop filter is to blur everything behind the red
rectangle widget. If we add a backdrop between PlatformView and Overlay, the top
part of the red widget will be blurred, because the top part is rendered in
FlutterView, which is under the backdrop. This makes option 2 impossible under
the current PlatformView/Overlay implementation.

Option 3. Use Flow to apply the mutation to none-PlatformView layers and
Quarts to apply the mutation to PlatformView layers. (Selected)

Because neither option 1 or option 2 is possible, the blur on PlatformView needs to
be applied with Quartz while we keep the non-PlatformView widgets to be blurred
with Flow. Because the blur effect for PlatformView and non-PlatformView is
applied separately without the knowledge of the pixels outside of the blurred
region, the edge between PlatformView and non-PlatformView widget is ignored
with a standard gaussian blur algorithm, which leads to some visual artifacts. See
the Apply Filter Effect section for more details.

The solution for this approach includes 2 parts:
1. Propagate the BackdropFilter mutation to the PlatformView. This includes:

a. adding a new backdrop filter mutator type
b. push the backdrop filter mutator to the mutator stack.

2. After getting the BackdropFilter information from the mutator stack, apply
the blur effect on the PlatformView. There are 3 major approaches to blur a
PlatformView (iOS UIView):

a. Use the “gaussianBlur” filter provided by UIVisualEffectView.
b. Take a screenshot of the PlatformView and use CIGaussianBlur filter to

blur the screenshot.
c. Use the “gaussian” filter provided by SwiftUI.blur.

Propagate The BackdropFilter mutation

Possible Approaches
● Tracking each visited PlatformView
● Rewalking the layer tree

Approach 1: Tracking each visited platform view

This approach essentially keeps each platform view leaf layer that is crossed during
the tree walking. When a platform view is encountered in the layer tree, the
platform view id of that view will be stored in a list. Normally, when a backdrop
filter mutator is encountered in the layer tree, platform view layers that were

PUBLICLY SHARED

https://developer.apple.com/documentation/uikit/uivisualeffectview?language=objc
https://developer.apple.com/documentation/coreimage/cigaussianblur
https://developer.apple.com/documentation/swiftui/menu/blur(radius:opaque:)

PUBLICLY SHARED
traversed before the backdrop filter call do not know to blur. To combat this, we
would use the list of platform view ids to manually push the mutation to the
mutator stack of each platform view that needs to be blurred. This would work
because at any point in the layer tree walking, the list would only contain the
platform view ids of previously encountered views, so we would only touch the
stacks of the platform views we need to blur.

Possible Implementation

To implement this approach, a list with its getter and setter methods could be
created within embedded_views.h to hold the visited platform views. The visited
platform view ids could be pushed to the list from platform_view_layer.cc. To
update the mutator stacks of the visited platform views, the blur mutation would be
pushed from backdrop_filter_layer.cc, and a method to receive the mutation, cycle
through the list, and push the mutation to each view could created and
implemented within FlutterPlatformViews.mm.

Approach 2: Rewalking the layer tree

This approach would rewalk the layer tree when a backdrop_filter_layer’s preroll
method is called and push the blur mutation to each platform views mutator stack
it encounters beforehand in real time. When a platform view is encountered in the
layer tree, a flag will be set. As the tree walking continues, if a backdrop filter
mutation is found later in the tree, it will call for a second walking of the tree up to
the point of the current backdrop filter call, and each platform view encountered
during this second walking will have the blur mutation pushed to their mutator
stack

Possible Implementation

To implement this approach, a flag would be created within the embedded_views.h.
When a platform view is encountered in the layer tree, the flag would be triggered
through platform_view_layer.cc. When a backdrop filter mutation is later found in
the layer tree, a separate second walking of the tree would be triggered by the
backdrop filter layer, and the blur mutation would be pushed from the backdrop
filter layer as well. From here, the blur could either be received by the platform view
layer and pushed to the mutator stacks from platform_view_layer.cc, or the blur
mutation could be pushed to FlutterPlatformViews.mm, along with the platform
view id from platform_view_layer.cc, and the mutator stacks would be updated
from there.

Approach Comparison

Readability

Approach 1 is the easier approach of the two to read and understand. The concept
of storing the platform views to a list as they are encountered in the layer tree and

PUBLICLY SHARED

PUBLICLY SHARED
manually pushing the blur mutation to each view in the list is very simple and easy
to understand. Approach 2 would require a little more of an understanding of the
layer tree and how the tree walking is achieved by the flutter engine.

Implementation

The implementation of Approach 1 would be simpler than that of Approach 2. The
process of creating the list, populating it with the platform view ids, and pushing
the blur to the mutator stacks is not a very complex process and should be fairly
simple to implement. While creating and triggering the flags for Approach 2 may be
simple, implementing the additional walk of the layer tree will be a lot more
complex of a process. In addition, the second walking of the layer tree does not
walk the entire tree, but must stop at the backdrop filter mutation that triggered
the second walking in the first place. Because of this, this approach would also
require the implementation of a way for the layer tree to know to stop at the
backdrop filter layer, and how to know which backdrop filter layer within the tree to
stop at if there are multiple.

Space Efficiency

Approach 1 creates the list of platform view ids which, although minimal, still takes
up space and affects the build time of the engine and apps within flutter. This can
be improved slightly with lazy initialization, which would only allocate space for the
list once the first platform view id is populated. Additionally, if a backdrop filter
mutator is not found within the layer tree walking, a list full of platform view ids was
still created but unused, taking up space unnecessarily. Approach 2 does not create
any additional objects or data structures besides the flag, making this approach
more space efficient.

Time Efficiency

Approach 1 adds one loop when pushing the blur mutation to the platform views
logged within the list, this process being O(n) as it only loops one time, but as far as
overall time efficiency is concerned, this approach should not greatly affect the time
composing a frame. Approach 2, when no backdrop filter mutation is found within
the layer tree or no platform views were found before a backdrop filter mutation,
should have no effect on the time composing a frame as it will not call for a rewalk
of the tree. When a backdrop filter is found within the layer tree, and a platform
view was found before its call, then this approach will call for a rewalk of the layer
tree. The walking of the layer tree will be O(n) as it only walks through the tree one
extra time, however a rewalking of the tree will likely affect the time composing a
frame more than that of Approach 1.

PUBLICLY SHARED

PUBLICLY SHARED

Chosen Approach
Approach 1 is chosen for easy implementation and readability reasons.

Step 1: Track each visited platform view
● Within FlutterPlatformViews_Internal.h, a vector of int values needs to be

created to keep track of the platform view id’s for each visited platform view.
There also needs to be a push method created to add items to the vector.
This method will be declared as virtual within embedded_views.h, overridden
within ios_external_view_embedder.h and ios_external_view_embedder.mm,
and defined within FlutterPlatformViews_Internal.h.

embedded_views.h

virtual void PushVisitedPlatformView(int64_t view_id) {}

Ios_external_view_embedder.h

void PushVisitedPlatformView(int64_t view_id) override;

Ios_external_view_embedder.mm

void IOSExternalViewEmbedder::PushVisitedPlatformView(int64_t view_id) {

platform_views_controller_->PushVisitedPlatformView(view_id);

}

FlutterPlatformViews_Internal.h

void PushVisitedPlatformView(int64_t view_id) {

visited_platform_views_.push_back(view_id);

}

private:

std::vector<int64_t> visited_platform_views_;

● You will populate the vector in platform_view_layer.cc at the end of the
Preroll of a visited platform view.

context->view_embedder->PushVisitedPlatformView(view_id_);

Step 2: Creating backdrop filter mutator

● To create the backdrop filter mutator, we had to update Mutator and
MutatorsStack classes in embedded_views.h. For the Mutator class, a
backdrop filter MutatorType and its respective constructors were created. In
MutatorsStack class, we defined the push function for the backdrop filter
mutator. The PushBackdropFilter method is then defined within
embedded_views.cc

Embedded_views.h (Mutator Class)

enum MutatorType { kClipRect, …, kBackdropFilter };

Mutator(const Mutator& other) {

PUBLICLY SHARED

https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/framework/Source/FlutterPlatformViews.mm
https://github.com/flutter/engine/blob/main/flow/embedded_views.h
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/ios_external_view_embedder.h
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/ios_external_view_embedder.mm
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/framework/Source/FlutterPlatformViews_Internal.h
https://github.com/flutter/engine/blob/main/flow/layers/platform_view_layer.cc
https://github.com/flutter/engine/blob/main/flow/layers/platform_view_layer.cc#:~:text=void%20PlatformViewLayer%3A%3APreroll,const%20SkMatrix%26%20matrix)%20%7B
https://github.com/flutter/engine/blob/main/flow/embedded_views.h
https://github.com/flutter/engine/blob/main/flow/embedded_views.cc
https://github.com/flutter/engine/blob/main/flow/embedded_views.h

PUBLICLY SHARED

type_ = other.type_;

switch (other.type_) {

…
case kBackdropFilter:

filter_ = other.filter_;

break;

default:

break;

}

}

explicit Mutator(std::shared_ptr<const DlImageFilter> filter)

: type_(kBackdropFilter), filter_(filter) {}

const DlImageFilter& GetFilter() const { return *filter_; }

bool operator==(const Mutator& other) const {

if (type_ != other.type_) {

return false;

}

switch (type_) {

…
case kBackdropFilter:

return *filter_ == *other.filter_;

}

return false;

}

private:

…
std::shared_ptr<const DlImageFilter> filter;

(MutatorsStack Class)
void PushBackdropFilter(std::shared_ptr<const DlImageFilter> filter);

embedded_views.cc

void MutatorsStack::PushBackdropFilter(

std::shared_ptr<const DlImageFilter> filter) {

std::shared_ptr<Mutator> element = std::make_shared<Mutator>(filter);

vector_.push_back(element);

};

● Once created, a case to handle the backdrop filter mutator needed to be
added to the ApplyMutators method within FlutterPlatformViews.mm and
the PushPlatformViewLayer within embedder_layers.cc.

FlutterPlatformViews.mm

auto iter = mutators_stack.Begin();

while (iter != mutators_stack.End()) {

switch ((*iter)->GetType()) {

…
case kBackdropFilter:

PUBLICLY SHARED

https://github.com/flutter/engine/blob/main/flow/embedded_views.cc
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/framework/Source/FlutterPlatformViews.mm

PUBLICLY SHARED

break;

}

++iter;

}

embedder_layers.cc.

for (auto i = mutators.Bottom(); i != mutators.Top(); ++i) {

const auto& mutator = *i;

switch (mutator->GetType()) {

…
case MutatorType::kBackdropFilter:

break;

}

}

Step 3: Pushing changes to the platform views
● Back in embedded_views.h, a new function to push the filter mutation to the

stack needs to be declared.

virtual void PushFilterToVisitedPlatformViews(

std::shared_ptr<const DlImageFilter> filter) {}

● Since this change is an ios specific change, this function will be overridden in
the ios_external_view_embedder.h and ios_external_view_embedder.mm
files.

Ios_external_view_embedder.h

void PushFilterToVisitedPlatformViews(

std::shared_ptr<const DlImageFilter> filter) override;

ios_external_view_embedder.mm

void IOSExternalViewEmbedder::PushFilterToVisitedPlatformViews(

std::shared_ptr<const DlImageFilter> filter) {

platform_views_controller_->PushFilterToVisitedPlatformViews(filter);

}

● The function is then referenced again in FlutterPlatformViews_Internal.h and
fully defined in FlutterPlatformViews.mm. The function loops through the list
of visited platform views and pushes the filter mutation to each of their
mutator stacks.

FlutterPlatformViews_Internal.h

void PushFilterToVisitedPlatformViews(std::shared_ptr<const DlImageFilter> filter);

FlutterPlatformViews.mm

PUBLICLY SHARED

https://github.com/flutter/engine/blob/main/shell/platform/embedder/embedder_layers.cc
https://github.com/flutter/engine/blob/main/flow/embedded_views.h
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/ios_external_view_embedder.h
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/ios_external_view_embedder.mm
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/framework/Source/FlutterPlatformViews_Internal.h
https://github.com/flutter/engine/blob/main/shell/platform/darwin/ios/framework/Source/FlutterPlatformViews.mm

PUBLICLY SHARED

void FlutterPlatformViewsController::PushFilterToVisitedPlatformViews(

std::shared_ptr<const DlImageFilter> filter) {

for (int64_t id : visited_platform_views_) {

EmbeddedViewParams params = current_composition_params_[id];

params.PushImageFilter(filter);

current_composition_params_[id] = params;

}

}

● The PushImageFilter method is defined within the EmbeddedViewParams
class in embedded_views.h to handle converting the filter mutation to a raw
pointer that can be handled by the PushBackdropFilter method for the
MutatorsStack class.

void PushImageFilter(std::shared_ptr<const DlImageFilter> filter) {

mutators_stack_.PushBackdropFilter(*filter);

}

● Finally, the function is called within the backdrop_filter.cc file.

if (context->view_embedder != nullptr) {

context->view_embedder->PushFilterToVisitedPlatformViews(filter_);

}

Apply Filter Effect

Context
The ApplyMutators method in the FlutterPlatformViewsController is called when the
mutators_stack is updated. This method iterates over the mutators_stack and
applies the active mutations for the current frame. When a kBackdropFilter pops
from the mutators_stack, the PlatformView must blur.

FlutterViews already blur correctly when a Backdrop Filter is applied. Skia blurs
these widgets with a Gaussian blur whose radius is set to the values inputted by the
Flutter developer. PlatformViews must match this blur.

To test our approaches to blur the PlatformView, we created a demo app that
follows the right layer tree outlined in the tree diagram at the beginning of this doc.
The app applies a Backdrop Filter to a Flutter Text Widget which covers a
FlutterView and a PlatformView. Since both the FlutterView and PlatformView are
behind the Backdrop Filter, both views must be blurred. The table below illustrates
this problem and its solution on our demo app.

Before Our Implementation After Our Implementation

PUBLICLY SHARED

https://github.com/flutter/engine/blob/main/flow/embedded_views.h
https://github.com/flutter/engine/blob/main/flow/layers/backdrop_filter_layer.cc
https://github.com/cyanglaz/platform_view_builder_ops_demo

PUBLICLY SHARED

The Backdrop Filter is applied to the “Hello World” Flutter Text Widget. The FlutterView fills the top
half of the screen behind the text widget and says, “This is a flutter view.” The PlatformView fills
the bottom half of the screen behind the label and says, “This is a platform view.”

The next sections outline the three approaches we explored to blur a PlatformView:
1. Initialize a UIVisualEffectView with a UIBlurEffect.

a. Extract the gaussianBlur filter and add it to the ChildClippingView.
b. Control the blur strength with a UIViewPropertyAnimator.

2. Take a screenshot of the PlatformView and use the CIGaussianBlur filter to
blur the screenshot.

3. Use the “gaussian” filter provided by SwiftUI.blur.

Our final solution follows Approach 1a. The implementation extracts the
gaussianBlur filter from a UIVisualEffectView that was initialized with UIBlurEffect,
and adds that filter to the ChildClippingView. The next sections describe the
different approaches and why we decided to implement Approach 1a.

Approach 1: Initialize a UIVisualEffectView with a UIBlurEffect
When a UIVisualEffectView is initialized with UIBlurEffect, the resulting
UIVisualEffectView shows a blurred view of its subviews. We need a blurred view of
the PlatformView’s subviews, however solely applying the UIBlurEffect with a

PUBLICLY SHARED

https://developer.apple.com/documentation/uikit/uiviewpropertyanimator?language=objc
https://developer.apple.com/documentation/coreimage/cigaussianblur
https://developer.apple.com/documentation/swiftui/menu/blur(radius:opaque:)
https://developer.apple.com/documentation/uikit/uivisualeffectview?language=objc
https://developer.apple.com/documentation/uikit/uiblureffect?language=objc

PUBLICLY SHARED
UIVisualEffectView is not a valid solution because their APIs do not allow
customizations. This means the default blur radius value cannot be changed and
the “colorSaturate” filter also added by UIBlurEffect cannot be removed. To meet
the project specifications, our solution must apply the blur radius inputted by the
Flutter developer and the blur’s coloring should not change.

Approach 1a and Approach 1b are two approaches we explored to utilize
UIBlurEffect’s Gaussian blur and customize it to meet our specifications. Ultimately,
we chose to implement Approach 1a because it removes the colorSaturate filter, is
a simpler solution, and is more space efficient.
We chose 1c as the final solution because it has the configuration flexibility of
approach 1a and provides support for partially blur PlatformViews.

Approach 1a. Extract the gaussianBlur filter and add it to the
ChildClippingView.
PR: https://github.com/flutter/engine/pull/34596

The UIBlurEffect applies a CAFilter, “gaussianBlur,” to the filters of its
UIVisualEffectView, as shown in the diagram below.

The main idea of this approach is to extract that gaussianBlur filter, copy the filter
for each applied Backdrop Filter, update the radius values of the copies, and add
them to the PlatformView’s ChildClippingView.layer.filters. The ChildClippingView is
the parent view of the PlatformView. By adding the gaussianBlur filters to its list of
filters, the PlatformView will display the blurs. The general steps of this approach
are:

1. Initialize a UIVisualEffectView with UIBlurEffect and extract the gaussianBlur
filter.

2. Update ChildClippingView.layer.filters to contain copies of the gaussianBlur
filter with the blur radius values from blurRadii.

Context
In the ApplyMutators method, when a kBackdropFilter pops from the
mutators_stack, its blur radius value is stored in an array, blurRadii. After all
mutators have popped, ApplyMutators calls the applyBlurBackdropFilters method

PUBLICLY SHARED

https://github.com/flutter/engine/pull/34596

PUBLICLY SHARED
on the PlatformView’s ChildClippingView, and passes blurRadii as its parameter.
applyBlurBackdropFilters is responsible for completing Steps 1-2 with the blur
radius values from blurRadii.

Determining the blur radius
When Flutter users create Blur Backdrop Filters, they specify the blur strength by
inputting sigma_x and sigma_y values. When sigma_x = sigma_y, a uniform circular
blur is rendered by Skia with the 2D Gaussian blur function.

Quartz also uses this function to create Gaussian blurs with the gaussianBlur filter.
To keep the blur circular, gaussianBlur uses a kernel that makes sigma_x = sigma_y.
Thus, gaussianBlur only has one property to specify the blur radius, inputRadius,
such that inputRadius = sigma_x = sigma_y.

Through testing, we verified that if inputRadius = sigma_x = sigma_y, the FlutterView
and PlatformView will render the same blur. Our implementation arbitrarily
chooses the sigma_x inputted by the Flutter user as the value for inputRadius.

1. Initialize a UIVisualEffectView with UIBlurEffect and extract the gaussianBlur filter.
Although the API for UIVisualEffectView and UIBlurEffect prevent editing the
gaussianBlur filter, this filter can be extracted and stored as an NSObject. Using
NSObject’s setValueForKey method, its input radius can be adjusted.

ChildClippingView’s private instance variable, “_gaussianFilter” stores the extracted
gaussianBlur CAFilter. Deep copies of _gaussianFilter are added to the
ChildClippingView when a new gaussianBlur is needed. By copying _gaussianFilter,
our implementation avoids unnecessarily extracting multiple gaussianBlur filters
from multiple UIVisualEffectViews.

When extracting the gaussianBlur filter, our implementation includes multiple
checks to ensure the hierarchies of UIVisualEffectView and UIBlurEffect match the
expected organization. If the APIs for these classes change any ordering or naming,
the gaussianBlur will not be extracted and Flutter contributors must rewrite the
checks. These checks prevent the app from crashing and instead do not apply a
blur backdrop filter. If no backdrop blur filters can be applied, applyBackdropFilters
returns NO to avoid future calls.

2. Update the array of active gaussianBlur filters to contain copies of the
gaussianBlur filter with the Flutter developer’s inputted radius values.
If the blur radius values in blurRadii match the current radius values of the
ChildClippingView’s gaussianBlurs, no changes are made. Otherwise, _gaussianFilter
is copied for each Backdrop Filter and its inputRadius is set to the corresponding
value from blurRadii. The copies are added to an NSMutableArray which is assigned
to ChildClippingView.layer.filters. Since ChildClippingView.layer.filters is an

PUBLICLY SHARED

https://en.wikipedia.org/wiki/Gaussian_blur#:~:text=In%20two%20dimensions%2C%20it%20is%20the%20product%20of%20two%20such%20Gaussian%20functions%2C%20one%20in%20each%20dimension%3A%5B1%5D%5B2%5D%5B3%5D

PUBLICLY SHARED
immutable array, any changes to the Backdrop Filters require reassigning
ChildClippingView.layer.filters.

Results

One Backdrop Filter Applied to Different PlatformViews (sigma_x = 5, sigma_y = 5)

UILabel with Text UIImageView WKWebView Google Maps Plugin

The blur intensity for FlutterViews and PlatformViews matches. No additional views were
added to the View Hierarchy.

Multiple Backdrop Filters Applied to UIImageView

PUBLICLY SHARED

PUBLICLY SHARED

Two Backdrop Filters Two Backdrop Filters Two Backdrop Filters Two Backdrop Filters

From outermost filter
to innermost filter:

All filters have
sigma_x = 5
sigma_y = 5

From outermost filter
to innermost filter:

Filter 1:
sigma_x = 5
sigma_y = 5

Filter 2:
sigma_x = 1
sigma_y = 1

From outermost filter
to innermost filter:

Filter 1:
sigma_x = 1
sigma_y = 1

Filter 2:
sigma_x = 5
sigma_y = 5

From outermost filter
to innermost filter:

All filters have
sigma_x = 1
sigma_y = 1

Layering backdrop filters with the same radius values and different radius values results in the
same blur for FlutterViews and PlatformViews.

One Backdrop Filter Applied to UIImageView with Different Radius Values

Zero backdrop filters sigma_x = 1
sigma_y = 1

sigma_x = 10
sigma_y = 10

sigma_x = 100
sigma_y = 100

PUBLICLY SHARED

PUBLICLY SHARED

Flutter users can input any positive number as a blur radius. The blurs match for FlutterViews
and PlatformViews.

Analysis of Approach 1a
PROS:

● This approach successfully blurs PlatformViews composed of different
UIViews.

● No additional UIViews are added to the View Hierarchy. The gaussianBlur
filters are added to ChildClippingView.layer.filters.

● The blur strength is set to match the Flutter user’s inputted values.
● The colorSaturate filter is not applied.
● This approach utilizes Apple’s code for Gaussian blurs.

CONS:
● Can only blur the entire PlatformView; cannot blur a rect inside the

PlatformView.
● This approach relies on Apple’s API for UIVisualEffectView and UIBlurEffect.

○ Accessing the gaussianBlur CAFilter depends on how the API orders
the subclasses of UIVisualEffectView and UIBlurEffect.

○ Updating the blur strength requires setting gaussianBlur’s private
property, inputRadius. We successfully deployed a demo app to the
App Store, however, this practice is generally not supported by Apple.

Approach 1b. Customize the gaussianBlur filter with a
UIViewPropertyAnimator
We were unsure if Apple would accept apps that directly access and update private
properties, so we first prototyped Approach 1b. This approach uses a
UIViewPropertyAnimator to limit the duration of applying the UIBlurEffect.

PUBLICLY SHARED

PUBLICLY SHARED
To apply the UIViewPropertyAnimator to the UIVisualEffectView, we created a class,
TimedVisualEffectView, that derives from UIVisualEffectView. TimedVisualEffectView
is initialized with UIBlurEffect and a UIViewPropertyAnimator that limits the
duration of applying the UIBlurEffect. This duration can be related to the sigma_x
inputted by the Flutter user such that the TimedVisualEffectView displays a blur that
resembles the blur Skia renders for any Flutter widgets. The TimedVisualEffectView
is added to the View Hierarchy to blur its superviews.

UILabel with Text UIImageView WKWebView Google Maps Plugin

Analysis
PROS:

● This approach successfully blurs PlatformViews with different UIViews.

CONS:
● This approach adds an additional UIVisualEffectView to the View Hierarchy.
● We need to write a formula that relates the Flutter user’s inputted sigma_x,

sigma_y to the blur duration.
○ This formula depends on the default inputRadius value for

UIVisualEffectView’s gaussianBlur CAFilter (currently 20).
● The colorSaturate filter is still applied and slightly alters the coloring of the

PlatformView. The discoloration is especially noticeable when multiple
backdrop filters are layered.

● This approach requires creating an additional class, TimedVisualEffectView.
Creating this class does not greatly affect app performance, however it is
more complicated than Approach 1a.

Approach 1c. Modify private properties in UIVisualEffectView

PUBLICLY SHARED

PUBLICLY SHARED
Based on approach 1a and 1b, we know that UIVisualEffectView cannot be used
directly because 1. The colorSaturate filter adds unwanted visual artifacts; 2. There
is no public API to update the inputRadius in the gaussianBlur filter; 3. The
“UIViewPropertyAnimator” approach is limited because it depends on the
gaussianBlur filter’s inputRadius.
This approach uses UIVisualEffectView to blur the PlatformView. The
UIVisualEffectView is modified to support configurations provided by Flutter’s blur
filter as much as possible:

● The frame of the UIVisualEffectView can be used to only blur part of the
PlatformView.

● Modify private properties of the UIVisualEffectView so that it mimics Flutter’s
blur filter. The below form shows the difference between the default
UIVisualEffectView and the modified UIVisualEffectView.

UIVisualEffectView Modified UIVisualEffectView

ColorSaturateFilter No ColorSaturateFilter

_VisualEffectSubview is not totally
transparent

_VisualEffectSubview has a clear
background (total transparent)

GaussianFilter’s inputRadius is 20 GaussianFilter’s inputRadius is the
same as sigmaX. The sigmaX is

determined from the ImageFilter.blur
object used to blur the PlatformView

Widget

In summary, the modified UIVisualEffectView (compared to the default
UIVisualEffectView) has these differences:

● Does not add additional colors, or color saturations to the view that it is
blurring.

● The blur intensity is configurable, with no upper limit.

Analysis of Approach 1c
PROS:

● This approach successfully blurs PlatformViews composed of different
UIViews.

● The blur strength is set to match the Flutter user’s inputted values.
● The colorSaturate filter is not applied.
● This approach utilizes Apple’s code for Gaussian blurs.
● Can blur a specific rect inside the PlatformView if asked to.

CONS:
● This approach adds an additional UIVisualEffectView to the View Hierarchy.

○ In most cases only one UIVisualEffectView is added to View Hierarchy,

PUBLICLY SHARED

PUBLICLY SHARED
but the app can do crazy things where multiple blur effects need to be
added to the PlatformView. The performance is compromised if there
are many UIVisualEffectView added to the View Hierarchy; it is likely
aligned with other approaches when many blur effects need to be
added on top of each other.

● This approach relies on Apple’s API for UIVisualEffectView and UIBlurEffect.
(Same as 1a)

○ Accessing the gaussianBlur CAFilter depends on how the API orders
the subclasses of UIVisualEffectView and UIBlurEffect.

○ Updating the blur strength requires setting gaussianBlur’s private
property, inputRadius. We successfully deployed a demo app to the
App Store, however, this practice is generally not supported by Apple.

Approach 2: Take a screenshot of the PlatformView and use the
CIGaussianBlur filter to blur the screenshot
The CIGaussianBlur Filter produces a blurred copy of a CIImage. For our prototype,
we first captured a CIImage screenshot of the PlatformView. Then we created a
blurred copy of this screenshot with the CIGaussianBlur filter and added the copy
as a subview to the PlatformView.

In the “View Hierarchy” row below, the red arrows point to the UIImageViews that
hold the blurred screenshots. These UIImageViews and the pictures in the “With
Blur” row show that not all PlatformViews successfully capture screenshots. For
example, the WKWebView used by Flutter’s WebView plugin uses CAEAGLLayer
which requires special handling from WKWebView to support screenshots. Since
WebView, GoogleMaps, and likely other plugins do not support screenshots by
default, we decided to not use the CIGaussianBlur Filter in our implementation.

UILabel with Text UIImageView WebView Google Maps Plugin

PUBLICLY SHARED

PUBLICLY SHARED

Approach 3: Use the “gaussian” filter provided by SwiftUI.blur (possible
future update)
SwiftUI provides a public API (.blur) that allows us to set blur inputRadius. This
approach creates an auxiliary SwiftUI view, and applies the blur on the SwiftUI view.
Under the hood, SwiftUI creates a gaussian blur CAFilter. We can then access the
CAFilter from the SwiftUI view and apply the filter to the PlatformView.
One drawback of this approach is that the blur CAFilter is only created if the SwiftUI
View is displayed on screen, and the SwiftUI View cannot be blank or completely
transparent. A workaround for this would be to add the SwiftUI View as a child view
of the PlatformView and have the frame to be off-screen. (For example, set the
frame to be (-100, 100, 1, 1). We have created a sample iOS App to demonstrate
how to use SwiftUI’s .blur method to blur UIView.

This approach requires adding Swift/SwiftUI as a dependency of Flutter engine.
Swift reached ABI stability at version 5.0, which requires a minimum iOS version of

PUBLICLY SHARED

https://developer.apple.com/documentation/swiftui/menu/blur(radius:opaque:)
https://github.com/cyanglaz/SwiftUIBlur

PUBLICLY SHARED
12.2. As of July 2022, the minimum iOS version that Flutter supports is iOS 11. This
means that if we add Swift as a dependency of the Flutter engine, the Swift
Standard Library will be embedded in the App bundle, which noticeably increases
the App size. It is not worth it to increase the App size for this feature where an
Objective-C solution is available. Note that this size increase does not apply to 1)
iPhone that is running iOS 12.2 and above, 2) Apps that contain any Swift code,
including the Application code and plugins that are written in Swift. Also, SwiftUI
requires iOS 13+, so this solution will not work for devices with a version below iOS
13.

Possible Future Update: Dividing Line
Approach 1a successfully blurs the PlatformView when a Blur Backdrop Filter is
applied. Although both Flutter widgets and PlatformView widgets are successfully
blurred, the widgets have a visible dividing line between them. There may also be a
line between multiple PlatformViews. We explored a few ideas to remove this
dividing line. The next sections describe the ideas we suggest prototyping first.

Use CIGaussianBlur filter to blur Picture Layer and PlatformView Layer
We prototyped capturing a screenshot of the FlutterViews and PlatformViews after
everything was rendered and applying CIGaussianBlur to this screenshot. With the
nature of different rendering engines and runtimes, we could not successfully
capture this screenshot. Furthermore, similar to Approach 2, some PlatformViews
could take longer to display the final view with an acceptable, visible lag to the
viewer (i.e. waiting for a web browser to open, or the Maps screen to load). These
screenshots would be harder to capture and maintain a consistent app user
experience.

Manually blur division lines by applying Gaussian formula
The Gaussian blur is applied using a convolution matrix. We had the idea of
manually applying the convolution matrix on the pixels at the borders between
PlatformViews and Flutter views. These pixels would be updated by the data from
both widgets to carry the blur across their division.

ACCESSIBILITY
N/A

INTERNATIONALIZATION
N/A

OPEN QUESTIONS
● Will it work?

PUBLICLY SHARED

https://aryamansharda.medium.com/image-filters-gaussian-blur-eb36db6781b1

PUBLICLY SHARED

TESTING PLAN
● A set of c++ unit tests to test if BackdropFilter information is correctly

propagated to PlatformViews.
● A set of XCTests can be used to test if the blur effects are applied to the

PlatformViews.
● A scenario app test can be used to prevent regression.
● A benchmark with a PlatformView being blurred.

DOCUMENTATION PLAN
● On BackdropFilter widget, we need to document that:

○ On iOS, if a PlatformView is blurred, sigmaY is always equal to sigmaX
regardless of the value configured by the user.

○ On iOS, if a PlatformView is blurred and its adjacent widget is also
blurred, the edge between them is not blurred.

○ Add a link to this document at the end of the above explanations.

MIGRATION PLAN
N/A

PUBLICLY SHARED

https://github.com/flutter/engine/tree/main/testing/scenario_app

