
SUMMARY

Trigger GestureRecognizers using trackpad gestures.

Author: Callum Moffat (moffatman)
Go Link: flutter.dev/go/trackpad-gestures
Created: 08-2021 / Last updated: 01-2022

OBJECTIVE
● Flutter engine should use platform APIs to recognize trackpad gestures
● Flutter engine should pass trackpad gestures to the framework statefully
● GestureRecognizers in the framework should react to those gestures

BACKGROUND
Due to Flutter’s focus on mobile platforms, apps have been designed for a wide
range of rich touch gestures. The recent addition of desktop platform support
means some apps might have interactions which are awkward with a mouse and
keyboard. For example, dismissing an image by dragging it to the side, or swiping
between pages. Using a pointer to directly manipulate content is very intuitive on a
touch screen, but clicking-and-dragging with a mouse to perform that same
interaction is not intuitive. Proper implementation of trackpad gestures will greatly
improve the experience of those interactions.

Rich trackpad support is something receiving expanded support recently, with new
efforts from Microsoft to improve the trackpad experience on Windows. Flutter
apps should support trackpad gestures to offer feature parity with other ways of
developing applications.

Glossary

PUBLICLY SHARED

https://flutter.dev/go/trackpad-gestures

PUBLICLY SHARED
● Pan Gesture

○ Action: Two fingers moving together on a trackpad
○ Intention: Move/translate the displayed content

● Zoom Gesture
○ Action: Two fingers moving farther apart or closer together
○ Intention: Increase or decrease the scale of the displayed content

● Rotate Gesture
○ Action: Two fingers rotating around a central point
○ Intention: Rotate the displayed content

OVERVIEW
The existing system for handling desktop scroll events (PointerSignal) works well
for handling stateless events such as those generated by a desktop mouse. Each
scroll wheel increment can be treated as a separate event and handled by different
widgets without consideration of previous events. But events as part of a trackpad
gesture should behave differently.

Each event of the same gesture should be handled by the same widget. Interactions
such as pull-to-refresh and flinging that are common in Flutter apps rely on the
timing of when a pan interaction starts and ends. So we need to communicate not
just the intent of the gestures (moving or zooming the content view), but when they
begin and finish.

Three new types of pointer events will be introduced: PointerPanZoomStartEvent,
PointerPanZoomUpdateEvent, and PointerPanZoomEndEvent.
PointerPanZoomStartEvent and PointerPanZoomEndEvent will not contain any
additional data, but simply indicate to the framework that a gesture is starting or a
gesture has ended. PointerPanZoomUpdateEvent will contain some additional fields
to represent a combination of pan, zoom, and rotate gestures.

class PointerPanZoomUpdateEvent extends PointerEvent... {

/// The total pan offset of the gesture

final Offset pan;

/// The amount the pan offset changed since the last event

final Offset panDelta;

/// The scale (zoom factor) of the gesture

final double scale;

/// The amount the gesture has rotated in radians so far

final double angle;

/// ...

}

PUBLICLY SHARED

PUBLICLY SHARED

Using a single type of gesture event will allow ScaleGestureRecognizers to
compete with DragGestureRecognizers. Even though most platforms lock a
gesture to a single type of interaction (such as pan vs zoom) before sending it to
applications, there are some which allow multiple types of gesture at once.

Non-goals
● A better experience for mice with scroll wheels

DETAILED DESIGN/DISCUSSION

Gesture data availability
Legend

Official
support from
OS

Possible with
caveats

Not needed Not possible,
but still usable

Not possible

Data

iPadOS macOS ChromeOS Android Windows Linux Web

Pan
(scroll)

✔ ✔ ✔ X ✔ ✔ X

Zoom ✔ ✔ X X ✔ ✔ X

Rotate ✔ ✔ X X X ✔ X

Raw
Trackpad
Data

X ✔ X ✔ X ✔ X

iPadOS
First-party APIs are available in UIKit to receive well-formed streams of gesture data
for pan, zoom, and rotate.

macOS
First-party APIs are available in AppKit to receive well-formed streams of gesture
data for pan, zoom, and rotate.

ChromeOS
The Android runtime for ChromeOS simulates a pointer when the user scrolls on a
trackpad, since that point has unique properties (buttonState=0), we can intercept
it and turn it into a gesture. The advantage versus remaining with the simulated
pointer is that it won’t trigger any taps or other inappropriate recognizers. When a
user performs a pinch-to-zoom or rotate gesture, ChromeOS translates it directly
into multiple touches to the application. There isn’t a reliable way to differentiate

PUBLICLY SHARED

PUBLICLY SHARED
those pointers from legitimate touchscreen presses, so we can’t handle them
properly.

Android
There are very few devices with a trackpad that run vanilla Android and not
ChromeOS. According to documentation the raw gesture information is available,
but the engine will need to be extended to turn the raw trackpad touch points into
gesture data. A test of a trackpad plugged into an Android tablet showed only
mouse movement was handled by the system. Scrolling did not work in any app, so
this platform is not a priority, it might be better to wait for system APIs to improve
instead of implementing custom event logic.

Windows
The DirectManipulation API on Windows can be used to receive a combined pan
and zoom transform. According to documentation, it should be possible to get
rotation as well, but it doesn’t happen in practice.

This is the API used by Chrome and Firefox. It only seems to work using the more
modern types of trackpad called “Precision Touchpad”, since those use a first-party
driver from Microsoft. Older trackpads from vendors such as Synaptics use custom
drivers which present to applications as mice with scroll wheels, and strip out the
vital timing of when gestures start and finish.

Linux
First-party APIs are available in GTK to receive well-formed streams of gesture data
for pan, zoom, and rotate.
Caveat: Environment variable GDK_BACKEND needs to be unset when running in
Wayland. If XWayland is used, the gesture data will not be available.

Web
Most web browsers don’t support handling trackpad gestures by the website.
Chrome and Firefox use the user’s trackpad gestures to manipulate the webpage
viewport directly. The events that make it to the JavaScript runtime are missing the
timing of when gestures start and end. There isn’t a way to get gesture events
beyond stateless scroll wheel increments. Safari has a non-standard Gestures
feature which could allow implementation for WebKit-based browsers. Discussion
here.

Fuchsia
I have no knowledge of this platform. It appears upon cursory investigation that
trackpad gestures are still in the RFC phase in Fuchsia.

Internal API Changes

PUBLICLY SHARED

https://developer.apple.com/documentation/webkitjs/gestureevent
https://developer.apple.com/documentation/webkitjs/gestureevent
https://github.com/w3c/uievents/issues/58
https://github.com/w3c/uievents/issues/58

PUBLICLY SHARED
The data for PointerPanZoomUpdateEvent will come from a few new fields in
pointer data packets.

struct alignas(8) PointerData {

// Must match the PointerChange enum in pointer.dart.

enum class Change : int64_t {

// ...

kGestureDown,

kGestureMove,

kGestureUp,

};

// ...

double pan_x;

double pan_y;

double pan_delta_x;

double pan_delta_y;

double scale;

double angle;

// ...

};

Straightforward plumbing changes will be needed within GestureBinding and
PointerEventConverter to wire up the events.

GestureRecognizer
Right now, new pointer sequences are added to GestureRecognizers by calling
void addPointer(PointerDownEvent event). Since trackpad gestures will start
with a PointerPanZoomStartEvent instead, the API for GestureRecognizer will
need to have new methods to accept those events.

abstract class GestureRecognizer extends GestureArenaMember with

DiagnosticableTreeMixin {

/// ...

void addPointerPanZoom(PointerPanZoomStartEvent event) {

_pointerToKind[event.pointer] = event.kind;

if (isPointerPanZoomAllowed(event)) {

addAllowedPointerPanZoom(event);

} else {

handleNonAllowedPointerPanZoom(event);

}

}

PUBLICLY SHARED

PUBLICLY SHARED

@protected

void addAllowedPointerPanZoom(PointerPanZoomStartEvent event) { }

@protected

void handleNonAllowedPointerPanZoom(PointerPanZoomStartEvent event) { }

@protected

bool isPointerPanZoomAllowed(PointerPanZoomStartEvent event) {

return false;

}

}

These will only need to be overridden in GestureRecognizers that want to
recognize trackpad gestures, such as DragGestureRecognizer and
ScaleGestureRecognizer. Other gesture recognizers don’t need to hear anything
about trackpad gestures, so they won’t receive any events.

Why should trackpad gestures be part of PointerEvent/GestureArena,
rather than PointerSignalResolver?
Trackpad gestures share almost all of the characteristics of touch pointers that are
solved by the GestureArena system. They need to be hit-tested and routed, and
need to be claimed by one recognizer amongst multiple possible options. This is
because a PointerPanZoom gesture contains all the degrees of freedom as two
touch points, representing a combination of pan, zoom, and rotate. The exact
meaning in each scenario will be resolved by the competition amongst different
GestureRecognizers. We need to use the GestureArena system to pick whether a
trackpad gesture should cause a swipe between gallery pages, or a zoom onto the
current gallery image based on the characteristics of the gesture (pan distance,
zoom scale, time duration). Using the GestureRecognizer system lets those
decisions use existing mechanisms for that work, and drive existing apps with rich
gesture support.

Why change the current GestureRecognizer classes?
GestureRecognizers have maintained an invariant - they track only one gesture at
once, so you will always get a sequence such as (scaleStart, scaleUpdate,
scaleEnd) before the next gesture starts. The solution for trackpad gestures needs
to ensure that apps only receive one gesture at once, even if both the trackpad and
touch screen are receiving input. Adding support for pan/zoom events to the
GestureRecognizer superclass and combining gesture inputs in the relevant
existing GestureRecognizers is the most straightforward way to do this.

PUBLICLY SHARED

PUBLICLY SHARED

Why can’t we split GestureRecognizer for touch v.s. trackpad?
A potential alternative design might have a new class to handle recognition of
PointerPanZoom events. The task of merging potential recognized gestures into a
maximum of one concurrent event could be done by some new
GestureRecognizerCombiner. For example, the default DragGestureRecognizer
might become a composition of a DragTouchGestureRecognizer and a
DragPanZoomGestureRecognizer. This approach is not possible, though, as there is
not a strictly one-way data flow from pointer data to gesture callbacks. The
recognition and disambiguation process depends on the current state of each
gesture recognizer. For example, an active scale gesture will immediately claim any
new pointers it is notified of. If trackpad recognition is done in a different class, it
won’t know about that, and a trackpad gesture might be claimed by the scale
widget’s scrolling viewport by mistake.
On the other hand, most platforms do not handle simultaneous touch and trackpad
very well at all, so if we accept inconsistent behavior when that is attempted, not all
these points need to be followed, and maybe GestureRecognizer could be split.
But a splitting strategy has some of its own problems (for example, customizations
to gestures will require modifications to three classes instead of one).

Listener
Listener will be extended with new callbacks for the new types of pointer events.
class Listener extends SingleChildRenderObjectWidget {

/// Creates a widget that forwards point events to callbacks.

const Listener({

...

this.onPointerPanZoomStart,

this.onPointerPanZoomUpdate,

this.onPointerPanZoomEnd,

});

/// ...

/// Called when a gesture begins such as a trackpad gesture

final PointerPanZoomStartEventListener? onPointerPanZoomStart;

/// Called when a gesture is updated

final PointerPanZoomUpdateEventListener? onPointerPanZoomUpdate;

/// Called when a gesture finishes

final PointerPanZoomEventListener? onPointerPanZoomEnd;

}

PUBLICLY SHARED

PUBLICLY SHARED

Public API Changes
For anyone simply using GestureRecognizers or GestureDetectors , there won’t
be any changes at all. Those recognizers will start emitting gesture callbacks based
on events from the trackpad. Custom handling could be done with Listener’s new
callbacks.

Other details
Inertia / Smooth Scrolling
It is up to the users of GestureRecognizers to decide what happens after the user
finishes their input. Scrollable, for example, decelerates the results of its gestures
to zero, scrolling smoothly to a stop. But other widgets change state right away
when the gesture completes. For example, PageView animates the end of a gesture
by snapping to the nearest page. To maintain these behaviors, it's important that
the gesture events sent by the engine end the moment the user lifts their fingers
off the trackpad.
At the end of a gesture, many platforms create additional scroll events to smoothly
decelerate. Luckily, in all supported platforms we are able to disambiguate and
pass through only real gesture events, and ignore any ones the system synthesizes.
Using the platform-synthesized scroll events could allow Flutter apps to have
identical scroll behavior to other applications on the system, but that data needs to
be provided through a separate channel, and not GestureRecognizers. For this
change, Flutter framework will be the only place that scroll inertia is generated. A
way to send platform scroll inertia to interested widgets such as Scrollable should
be a separate change.

Impact on engine performance
Adding these new fields will increase the size of each pointer packet by 48 bytes,
which is an increase in memory copy of 5.7KB/s assuming a 120Hz sample rate. A
simple optimization (sharing the fields for scrollDelta and panDelta) could reduce
that to +32B / +3.8KB/s. A more complex rewrite of the pointer packet using a union
of structs to reduce the number of total fields sent could result in an overall net
effect of -16B / -1.9KB/s.
The baseline data transfer from pointer packets using the same assumptions is
27.8KB/s.

OPEN QUESTIONS
● ScaleSlop is based on absolute pixels, but the scale value in

PointerPanZoomUpdateEvent will be relative. I made up 1.05 “scale units”
instead of 18 pixels to trigger the ScaleGestureRecognizer . What should
this value be?

● Is special handling needed to forward gestures to embedded PlatformViews?

PUBLICLY SHARED

PUBLICLY SHARED
Since PlatformViews are not merged in any desktop embedding yet, I think
this issue hasn’t come up.

● What should the value for pointerCount be in ScaleUpdateDetails

callbacks?
● Should we change DragUpdateDetails and ScaleUpdateDetails to indicate

the gesture came from a trackpad?
● Come up with a better name than “pointer gesture”, it causes some

confusion in the GestureRecognizer code Name change is to Pointer Flow
Name change is to PointerPanZoom

TESTING PLAN
Unit tests in the framework to ensure that platform gesture events correctly trigger
GestureRecognizers. Also need to ensure that multiple gestures at once as well as
gestures + touches will be recognized correctly.

Only iOS/macOS have any support for triggering trackpad gestures as part of
end-to-end testing.

MIGRATION PLAN
This should not break any existing workflows or APIs. Some gesture events will be
sent instead of scroll events, but unless an app has been designed solely for
desktop without using any GestureRecognizers, the experience will be improved
automatically. Widgets that use GestureRecognizers directly instead of
GestureDetectors will need to forward the onPointerPanZoomStart callback of
Listener to their GestureRecognizers to have them respond to trackpad input.
iPadOS apps will need to set a new key in Info.plist to get zoom and rotate gestures
through this system, but until that key is set, iPadOS will emulate the gestures by
faking touch points. So this isn’t a breaking change for iPadOS.

PUBLICLY SHARED

